Math 307 - Differential Equations - Spring 2017

Exam 1 Solutions

Problem 1. For parts (a)-(c), we will choose a =4 and b= 1.

216
(a) In this case we need q < - i 4 so choose ¢ = 3. Observe the direction field

with several integral curves plotted
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There is some peculiar behavior around y = 1 and y = 3. Remember that looking
at the limit as t — oo we are following the solutions as we go to the right. It looks
y1 = 1 and yo = 3. It looks like there are constant solutions at these two values, so
let’s check. The differential equation here is

Y =-y+4y—3=—(y—1)(y—3)

so we can see that y =1 and y = 3 are indeed constant solutions. This verifies that
y1 =1 and y, = 3.
(b) This time we must choose ¢ = 4. The direction field with integral curves looks like

this now
1
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and this time we see interesting behavior at y = 2 which suggests that y; = 2. It
again appears that there is a constant solution there, so let’s look at the differential
equation to look for constant solutions

y = -y’ +dy—4=—(y—2)>

Thus we see that the constant solution is just y = 2 which verifies that y; = 2.
(c) Here, we need q > 4, so choose ¢ =5. The integrals curves in this case appear as
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We can see that they all go to —oo
Problem 2.

(a) Solve the differential equation by separation:

=rl(S—-1) =
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We can see that if I =0 or [ = S, we have constant solutions, so assume I # 0,S5.

Then, integrate both sides:

dar - [(1/S 1S\, 1 1T
/m_/(T+ﬁ>dl_E(ln]_ln(s_l))_Elns_[

and
/7’ dt =rt+C
s0 . s
—1 =rt+C.
shs—1 "t
Multiply by S then exponentiate to get
I
=C rSt'
s—1_ ¢
Plug in the initial value 1(0) = Iy to get
1o
=Ce’ =C
S—1I, °
Solve for I in the solution above and plug in the value for C to get
S

I =

(S~ ISt + Iy’

To see what happens to the population (I(t)) as time goes on, take the limit ast — oo:

lim I(¢) = lim 5l 5l _ 5l
t—o0 i (S — ]0>6_T‘St + Iy (S — I())(O) + I N Iy
This means the whole population gets infected!

=5

If the vaccination rate is high enough, then the disease is eradicated, otherwise the
number of zombies stabilizes at S — T In the graphics below, S =10 and r = 0.5.

,
In this first one ¢ = 3 (q < rS). We can see that there is an equilibrium that the

number of infected tend towards at S — 1 =10 —6 = 4.

10




In this next one ¢ =6 (q > rS). We can see that in all cases, the number of infected
tends to zero.
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(¢c) The differential equation is

I'=rI(S—1)—ql
which we can rewrite as
I'+(qg—7rS) =—rI*
This is a Bernoulli equation with n = 2, so make the substitution u = I'™™ which
will turn the differential equation into
u' + (rS —qu=r.
Solving this using the integrating factor

o= eft(rsfq)dz _ e(rqu)t
we get the solution

r

u= + Celar9t
rS —q
and plugging back in v = I~' we can solve for I to get
g _ 4

r

T 1+ CelarSit’

Using the initial condition 1(0) = I, one can find that C' = "5—l)=4

Io(rS—q) *
Now we just need to take the limits in the three different cases:
(g <1r8) In this case, 9™ — 0 ast — oo, so we get

lim I(t) = li Sor 57, a
P <)_t££lol+Ce(q—’”5)t_1+C’(0) G

(g=7rS) If ¢ = rS the differential equation becomes I' = —rI? which has the solution
I = # We can see that

lim I(t) = 0.

t—o00



(g >7rS) If ¢ > S, then e ™" — 00 ast — co. Thus
4

lim /(t) = lim = 0.

t—00 t—)ool—i—C@q rS)t

Problem 3. Make the substitution u = arctany. Then u' = ﬁy’ and plugging this into
the differential equation gives
2 2

w4 —u=—.
x x
This is now a linear equation, so use an integrating factor:
o= efm%ds _ 621n\ac| —
Then we get the solution of the DE in u:
2
u=gz> /(1,2) (—) dr = x2/2x de =272 (2+C) =1+ Ca™?.
x

Since u = arctany we have
arctany =1 +Czx™? = y=tan (1 + C’J:_z) .

Problem 4.
(a) y1 being a solutions means y; = p(x)yi + q(z)y1 + r(x). We just need to plug in

/

y = y1 + — as the problem suggests. y' =y — —u', so plugging in gives
U u

YL — R p(z) <y1 + l>2 +q(x) <y1 + 1) +r(z)

ya—;u' = o) (2% 4 ) ) () )
V- = () + gy (@) + <>(%+%)+q<x>%
yf—%u’ = o/ +p(z) ( )+q
—%u' = p(z) ( >+q(x
W= ple) (2~ 1)~ ga)u
v+ (2yip(z) +q(x))u = —p(z)

Which is a linear differential equation in u.
(b) Matching up the differential equation with the gemeral form, we get that p(z) =

1,q(z) = 2x,r(z) = 2% — 1. Plug these, along with y, = —x into the equation
we found in part (a) to get
w4 2(—z)(1) +2x)u = -1
W +0u = —1

o= -1



1
Thus uw = —x + C and plugging this into y = y; + — to get y we have
u

Problem 5. We have to solve this in two pieces:
0 <x <1 Here, g(x) =1 and so the differential equation is

y 42y = 1.
This is a linear differential equation, so

o= ewads _ eQm

Yy = e (/ (e%) (1)dx> —e 2 (%e% + C’) = % + Ce %2,

Using the initial value, we get

and

1 1 1
0)=-+C’=-4+0C=0 = C=--.
Thus L1 )
o —2x __ —2x
x> 1 Here g(x) =0 and so the differential equation is
y+2y=0
which gives as its solution
y = Ce 2"

The initial value CANNOT be used here since the initial value is at x =0, but x > 1
here. To find C, we match up this solution with the solution to the previous part at
x =1, the x-value where they meet up. From the first solution

1

y(1) = 3 (1—e7?)

and the new one
y=Ce 2
Setting these equal to each other, we get

1 1 1
067225(1—672) = C’:§(1—e’2)62:§(62—1).
Thus the solution for x > 1 is

1 2 —2
— Z(e2—1)e 2",
y 2(6 Je

Putting the two pieces together, we have the solution
s(1—e?), 0<2<1

y =
(=1, z>1

Problem 6. First recall the Mean Value Theorem
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Theorem (Mean Value Theorem). Suppose that f is continuous on the closed interval [a, b]
and differentiable on (a,b), then

fa) = f(b) = f'(c)(a—b)
for some ¢ € (a,b).

(a) Holding x constant allows us to think of f(x,y) as a function of y only. Let’s reinforce
this by writing g.(y) = f(x,y). Then, applying the Mean Value Theorem to g,, we
have

9:(1) = 9:(12) = g,(c) (11 — o).
Replacing g, with f we have

flz,y) — f(2, ) = 2—5(1370)(?/1 — 1)

Now, take the absolute value of both sides

o) — )| = 13—;‘@,@@1 ) —

~[Fwo

0
Now, let K be the mazimum value of —f on the rectangle D, then

Jy

0
Fo ) — Flags)| = ‘8—5@,0) 1 — el < Klys — o

as desired.
(b) Let o(x) and ¥ (x) be solutions of (5), then

/fSSO ds and Y(z /fsw

Take the difference of p(z) and (x) to get

0= [ o) ds— [ i) ds= [ 1 sple)) = £ (5,066 ds

as desired.
(¢) Recall the fact that |ff dx| < [|fldx, then applying absolute value to the equation
in part (b) we get

|o(z) — ()| = i [f (s,60(5)) = [ (s, 9(s))] ds| < /0 |f (s,0(5)) = [ (s,0(s))| ds
as desired.
(d) Combine the inequality we found in part (a) with the result of part (¢). Use y; = ()
and yy = (x).

o(z) = ¥(2)] < |f (s,0(s)) = f (s,4(s))| ds
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5
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V2)

as desired.



(e) Letting U(x) = [; |p(s) —1b(s)|ds we have U'(x) = |¢(x) — ¥ (x)| and so the inequal-
ity from part (d) is

U < KU.
Rearranging we get
U —-KU<O0
which looks like a linear differential equation. The integrating factor would be
,LL(QS) _ efz —Kds _ —Ku

so multiplying the equation by this gives
e KU — Ke KU = (e75°U) < 0.

Integrating both sides from 0 to x gives

e KTy <0
and since e %% > 0 we can divide by it to get
U<o.
Thus, combining this with the original inequality, we have
U <KU<O0
so that
U' <o.
Since U'(z) = |¢(x) — (x)] > 0 we therefore have the desired conclusion:
U'(z) = 0.

(f) Continuing from part (e),

implies that
() —P(x) =0 =  ¢(x)=1v()

which gives the uniqueness, as desired.



